Chap. 26 Design of Digital Controllers

26.1 Digital PID Controller

$$
p(t) = \overline{p} + K_c[e(t) + \frac{1}{\tau_I} \int_0^t e(t')dt' + \tau_D \frac{de(t)}{dt}]
$$

 \int J_0 t $\int_0^t e(t')dt' \cong \sum_{k=1}^n$ $\sum_{k=1}^{n} e_k \Delta t$, $\frac{de}{dt} = \frac{e_n - e_{n-1}}{\Delta t}$

(rectangular rule) (backward difference)

Position Algorithm

$$
p_n = \overline{p} + K_c \big[e_n + \frac{\Delta t}{\tau_I} \sum_{k=1}^n e_k + \frac{\tau_D}{\Delta t} (e_n - e_{n-1}) \big]
$$

Let the deviation variable $p_n' = p_n - \overline{p}$

$$
Z(e_n) = E(z), \ \ Z(e_{n-i}) = z^{-i}E(z)
$$

$$
\therefore P(z) = K_c[E(z) + \frac{\Delta t}{\tau_I}(z^{-n+1} + z^{-n+2} + \dots + z^{-1} + 1)E(z) + \frac{\tau_D}{\Delta t} (1 - z^{-1})E(z)]
$$

$$
= K_c[1 + \frac{\Delta t}{\tau_I}(\frac{1}{1 - z^{-1}}) + \frac{\tau_D}{\Delta t}(1 - z^{-1})]E(z) \qquad (\text{as } n \to \infty)
$$

$$
D(z) = \frac{P'(z)}{E(z)} = K_c[1 + \frac{\Delta t}{\tau_I}(\frac{1}{1 - z^{-1}}) + \frac{\tau_D}{\Delta t}(1 - z^{-1})] \qquad : \text{Position Form}
$$

Velocity form (avoid summation, no specification of \bar{p})

$$
\Delta p_n = p_n - p_{n-1} = p'_n - p'_{n-1}
$$

\n
$$
\Delta p_n = K_c[(e_n - e_{n-1}) + \frac{\Delta t}{\tau_I}e_n + \frac{\tau_D}{\Delta t}(e_n - 2e_{n-1} + e_{n-2})]
$$

\n
$$
\Delta P(z) = K_c[(1 - z^{-1}) + \frac{\Delta t}{\tau_I} + \frac{\tau_D}{\Delta t}(1 - 2z^{-1} + z^{-2})]E(z)
$$
: Velocity Form

- (position form) x $(1-z^{-1})$ = (velocity form)

For integral, use trapezoidal approximation

$$
\int_0^t e(t')dt' \approx \sum_{k=1}^n \left(\frac{e_k + e_{k-1}}{2} \right) \Delta t
$$

\n
$$
\Rightarrow \Delta P(z) = K_c \left[(1 - z^{-1}) + \frac{\Delta t}{2\tau_I} (1 + z^{-1}) + \frac{\tau_D}{\Delta t} (1 - 2z^{-1} + z^{-2}) \right] E(z)
$$

 \rightarrow more accurate, but may not achieve better performance (slightly different values of controller settings)

Features of Digital PID Controller

1. Elimination of Reset windup

- Error summation grows very large ⇒ reset windup
- Saturated controller output \Rightarrow Sustained error for a while \Rightarrow big summation term \Rightarrow errors with opposite sign should cancel the summation over $100\% \Rightarrow$ cannot act immediately even though the error sign changed!
- Startup situation under automatic control

For Position algorithm,

- a. Place an upper limit on the value of summation (when the controller saturates, suspend the summation until ...)
- b. Back calculate the value of e_n that just cause the controller to saturate. (Use this actual value as e_{n-1} in the next controller calc.)

(if saturated,)

$$
100 = \bar{p} + K_c[e_n + \frac{\Delta t}{\tau_I} \sum_{k=1}^{n-1} e_k + \frac{\Delta t}{\tau_I} e_n + \frac{\tau_D}{\Delta t} (e_n - e_{n-1})]
$$

$$
\Rightarrow e_n = \left[\frac{-(100-\overline{p})}{K_c} - \frac{\Delta t}{\tau_I} \sum_{k=1}^{n-1} e_k + \frac{\tau_D}{\Delta t} e_{n-1}\right] / \left(1 + \frac{\Delta t}{\tau_I} + \frac{\tau_D}{\Delta t}\right)
$$

(next)

$$
p = \overline{p} + K_c[e_n + \frac{\Delta t}{\tau_I}(\sum_{k=1}^{n-1} e_k + \frac{(100 - \overline{p})}{k_2} - \frac{\Delta t}{\tau_i} \dots) + \frac{\tau_D}{\Delta t}(e_n - \frac{\Delta t}{\tau_I}(\dots))]
$$

2. Elimination of Derivative kick

- a. $e_n \rightarrow -b_n$ (if $e_n = r_n b_n$)
- b. Step change in set point \rightarrow ramp (Limit the rate of change in r_n)

3. Effect of Saturation on Controller Performance

Suppose
$$
\frac{k_c \tau_D}{\Delta t} = 100
$$
 (\because Small Δt) and $e_n : 0 - 100\%$, $p_n : 0 - 100\%$

 \Rightarrow if $\Delta e_n = 1\%$, $\Delta p = 100\% \Rightarrow$ exceed the saturation limit \Rightarrow be careful to select the controller settings and Δt to avoid scaling problem

4. Comparison of Position and velocity Algorithm

5. Use of Dimensionless Controller Gain

 K_c will be dimensionless in commercial controller, but input/output values can be shown in engineering unit for convenience \Rightarrow Not dimensionless!!

6. Time delay Compensation

Smith predictor (Model-based approach) (Digital version : analytical predictor) \Rightarrow If there are large estimation error (±30%) in time delay, PI will perform better.

 $E' = E - \tilde{C}_1 = R - \tilde{C}_1 - (C - \tilde{C}_2)$ if $G = \tilde{G}$, $\tilde{C}_2 = C$ and $E' = R - \tilde{C}_1$ (No time delay in \tilde{C}_1)

$$
G_c' = \frac{P}{E} = \frac{G_c}{1 + G_c \widetilde{G}^*(1 - e^{-\Theta_s})}
$$

For $G = \widetilde{G}$,

$$
\frac{C}{R} = \frac{G_c G^* e^{-\Theta_s}}{1 + G_c G^*}
$$

by contrast conventional feedback $G_cG^*e^{-\Theta_s}$ $1+G_cG^*e^{-\Theta s}$

for load charge

$$
\frac{C}{L} = \frac{G_L[1 + G_c G^*(1 - e^{-\Theta_S})]}{1 + G_c G^*}
$$

Physical Realizability of Digital Controllers

$$
G_c(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} \dots b_k z^{-k}}{a_0 + a_1 z^{-1} + a_2 z^{-2} \dots a_m z^{-m}}
$$

From above eq'n, $a_0 \neq 0 \rightarrow$ physically realizable (not depending on future inputs)

26.2 Selection of Digital PID Controller Settings

1. Conversion of Continuous Controller Settings

- for small Δt , finite difference approximation is reasonable $(\Delta t/\tau \leq 0.1)$
- ZOH causes effective one time delay

$$
\therefore \text{ let } \Theta \rightarrow \Theta + \frac{\Delta t}{2} \text{ and compute } K_c, \tau_p, \tau_p
$$

2. Digital Controllers based on Integral Error Criterion

- ISE, IAE, ITAE
- From the digital simulation, digital PI controller tuning parameters were obtained based on models.
- From the model characteristic (K, Θ, τ) \Rightarrow Find K_c and τ_I depending on Δt
- Lopez et al :

When Θ/τ is very small or $\Delta t/\tau$ is large, K_c must be modified.

- Mosler *et al* : Gain margin = 1.7 and K_C = 0.6 K_{CU} For large Δt , P_U and K_C/K_{CU} should be modified.

3. Pole Placement

$$
1 + G_c(z)HG(z) = 0 \Rightarrow (1 - a_1 z^{-1})(1 - a_2 z^{-1}) \dots (1 - a_n z^{-1}) = 0
$$

Assign desirable a_i 's in z-domain

- \Rightarrow For continuous system, it's a very good approach, But for discrete system, precaution should be taken since the location of zero is also very important!
- \Rightarrow Candidate should be checked by simulation.

26.3 Direct Synthesis Methods

- Closed-loop T. F.

$$
\frac{C(z)}{R(z)} = \frac{HG(z)G_c(z)}{1 + HG(z)G_c(z)}
$$
 where $HG(z) = K_m HG_v G_p(z)$

- If K_m , G_v , G_f , G_c are specified, $\frac{C}{R}$ can be derived from these information.
-

In the same manner, specify
$$
K_m
$$
, G_p , G_v , $(C/R)_d$, then G_c can be calculated.

$$
G_c(z) = \frac{1}{HG(z)} \frac{(C/R)_d}{1 - (C/R)_d} \cdot HG(z)
$$
 will be replaced by $\widetilde{HG}(z)$

- $G_c(z)$ has the reciprocal of process, $\frac{1}{HG(z)}$
- Poles of process become zeros of controller unless some are cancelled by (C/R) \Rightarrow Stability problem even though the process is stable.
- Theoretically, $G_c(z) \cdot HG(z) = \frac{(C/R)_d}{1 (C/R)_d}$ (No stability problem)
- Actually, $G_c(z)$ cannot cancel the unstable zeros exactly! (due to imperfect models)
- If the system, $HG(z)$ has a time delay, G_c will be have prediction
	- \Rightarrow physical realizability problems
	- \Rightarrow (C/R) _d should contain the z^{-N-1} (-1 is due to effective time delay)

* Minimal Prototype Algorithm

<Design criteria for this algorithm>

- 1. No offset (requires integral action)
- 2. Rise time should equal the minimum no. of Δt
- 3. The settling time should be finite
- 4. $G_c(z)$ and $(C/R)_d$ must be physically realizable.
- Including a time delay in $(C/R)_d \Rightarrow G_c(z)$ will be physically realizable.

 \therefore (C/R) _d = z^{-N-1} \Rightarrow follow the set point exactly except the required time delay

Ex 26.3 ($K = 1$, $a = 0.8187$, $\Delta t = 0.2$, $\tau = 1$, $\Theta = 0.2$) $HG(z) = \frac{K(1-a)z^{-N-1}}{1-az^{-2}}$ \Rightarrow develop the minimal prototype controller!

Sol)

let
$$
(C/R)_d = z^{-N-1}
$$
 as $(C/R)|_{z=1} \rightarrow$ no offset)

$$
\therefore G_c(z) = \frac{1 - az^{-1}}{K(1 - a)z^{-N-1}} \frac{z^{-N-1}}{1 - z^{-N-1}} = \frac{(1 - az^{-1})}{K(1 - a)(1 - z^{-N-1})} = \frac{1 - 0.8187z^{-1}}{0.1813(1 - z^{-2})}
$$

for ramp change in set point $(r_n = 0.1n, n=0 \text{ to } 9, r_n = 1 \text{ for } n \ge 10)$,

for load change

If
$$
L(s) = \frac{1}{s}
$$
, $G_L(s) = \frac{e^{-\Theta_s}}{\tau_s + 1}$
\n
$$
Z[G_L L(s)] = \frac{z^{-N-1}(1 - e^{-\Delta t/\tau})}{(1 - e^{-\Delta t/\tau}z^{-1})(1 - z^{-1})} = \frac{0.1813z^{-2}}{(1 - 0.8187z^{-1})(1 - z^{-1})}
$$

$$
C(z) = \frac{G_L L(z)}{1 + G_c(z) HG(z)} = \frac{G_L L(z)}{1 + (C/R)_d / (1 - (C/R)_d)}
$$

=
$$
\frac{G_L L(z)(1 - (C/R)_d)}{1 - (C/R)_d + (C/R)_d} = G_c L(z)(1 - (C/R)_d)
$$

=
$$
\frac{0.1813z^{-2}(1 - z^{-2})}{(1 - 0.8187z^{-1})(1 - z^{-1})} = \frac{0.1813z^{-2}(1 + z^{-1})}{1 - 0.8187z^{-1}}
$$

 $\Rightarrow G_c(z)$ has $(1-z^{-N-1})$ in the denominator and for all N, it has also $(1-z^{-1})$ which provides integral action !

Ex 26.4 For
$$
G(s) = 1/[(5s+1)(3s+1)]
$$
, $(N = 0$ and $\Delta t = 1$)
\n
$$
HG(z) = \frac{(b_1 + b_2 z^{-1})z^{-N-1}}{1 + a_1 z^{-1} + a_2 z^{-2}} \quad (a_1 = -1.5353. \ a_2 = 0.5866, \ b_1 = 0.0280, \ b_2 = 0.0234)
$$

⇒ minimal prototype controller ?

Sol)

Let
$$
(C/R)_d = z^{-1}
$$
 for $N=0$
\n
$$
G_c(z) = \frac{1}{HG} \frac{(C/R)_d}{1 - (C/R)_d} = \frac{1 + a_1 z^{-1} + a_2 z^{-2}}{b_1 z^{-1} + b_2 z^{-2}} \frac{z^{-1}}{1 - z^{-1}}
$$
\n
$$
= \frac{1 + a_1 z^{-1} + a_2 z^{-2}}{b_1 + (b_2 - b_1)z^{-1} - b_2 z^{-2}} = \frac{1 - 1.5353 z^{-1} + 0.5866 z^{-2}}{0.0280 - 0.0046 z^{-1} - 0.0234 z^{-2}}
$$

 \Rightarrow physically realizable, but intersample ripple (ringing)

$$
\frac{(1-0.8195z^{-1})(1-0.7158z^{-1})}{0.028(1-z^{-1})(1+0.8357z^{-1})}
$$
 (ringing pole in the denominator)
(Not appeared in the output)

<To avoid intersample ripple>

To reach the final steady state, use at least $m+N$ sampling periods

$$
(m : \text{order of denom. } N = \Theta/\Delta t)
$$

\n
$$
\Rightarrow (C/R)_d = z^{-N}(\mathbf{Y}_1 z^{-1} + \mathbf{Y}_2 z^{-2} + \dots + \mathbf{Y}_m z^{-m})
$$

\nwhere $0 \leq \mathbf{Y}_i \leq 1$

Ex
$$
m=2
$$
, $N=0$ \Rightarrow $(C/R)_{d} = \gamma_{1} z^{-1} + \gamma_{2} z^{-2}$

For step change, $\frac{1}{1}$ $1-z$ $^{-1}$

$$
C = \frac{y_1 z^{-1} + y_2 z^{-2}}{1 - z^{-1}} = y_1 z^{-1} + (y_1 + y_2)(z^{-2} + z^{-3} + \dots)
$$

for no offset \rightarrow $y_1 + y_2 = 1$

for no over shoot \Rightarrow $r_1 \leq 1$

 \Rightarrow It takes two steps to reach steady state.

For Ex26.4,

$$
G_c(z) = \frac{1}{HG} \frac{(C/R)_d}{1 - (C/R)_d} = \frac{1 + a_1 z^{-1} + a_2 z^{-2}}{b_1 z^{-1} + b_2 z^{-2}} \frac{Y_1 z^{-1} + Y_2 z^{-2}}{1 - Y_1 z^{-1} - Y_2 z^{-2}}
$$

$$
= \frac{(1 + a_1 z^{-1} + a_2 z^{-2})(Y_1 z^{-1} + Y_2 z^{-2})}{z^{-1} (b_1 + b_2 z^{-1})(1 - Y_1 z^{-1} - Y_2 z^{-2})}
$$

if $y_2=1-y_1$ (y_1 < 1), third term in the denominator is $(1+(1-y_1)z^{-1})(1-z^{-1})$

For rippling, examine
$$
\frac{P(z)}{R} = \frac{G_c(z)E(z)}{R} = \frac{1}{HG(z)} \frac{C/R \cdot R \cdot (1 - C/R)}{1 - C/R} \frac{1}{R}
$$

\n
$$
= \frac{C/R}{HG(z)} = \frac{(1 - a_1 z^{-1} a_2 z^{-2})(\frac{x}{1} z^{-1} + \frac{x}{2} z^{-2})}{z^{-1} (b_1 + b_2 z^{-1})}
$$
 (possible ringing pole in denom.)
\n
$$
\Rightarrow \frac{x_1}{b_1} = \frac{b_1}{b_1 + b_2}
$$
 for no rippling \Rightarrow $(C/R)_d = (b_1 z^{-1} + b_2 z^{-2})/(b_1 + b_2)$

<The disadvantages of the minimal prototype controller>

- 1. The design specifies only the response at the sampling instants
	- --> intersample ripple or large overshoot due to vigorous control action caused by tight specification
- 2. The controller is highly tuned for the specific type of changes. good set point tracking $\leftarrow \mathsf{X} \Rightarrow$ good load regulation

3. force all poles \rightarrow around origin of the z-plane for rapid response --> extremely sensitive to parameter changes in the model

* Deadbeat Controller (special case of m. p. c with no rippling)

- $C(z)$ will follow $R(z)$ after $(m+N)$ steps exactly $(m :$ tuning parameter)

$$
\frac{C}{R} = (p_1 z^{-1} + p_2 z^{-2} + \ldots + p_m z^{-m}) z^{-N}
$$

where $p_1 + p_2 + \ldots + p_m = 1$

- Others are same as minimal prototype controller (finite settling, no offset, physical realizability)
- Controller output, $P(z)$ will stay at the same value after m step for a step change in set point (No rippling)

 $P(z)=(q_0+q_1z^{-1}+\ldots+q_mz^{-m})R(z) \rightarrow R(z)$ needs not be specified where $q_0 + q_1 + \ldots + q_m = u(m) = \frac{1}{K_p}$ (1/(steady state gain))

$$
G_c = \frac{1}{HG(z)} \cdot \frac{(C/R)_d}{1 - (C/R)_d} = \frac{(q_0 + q_1 z^{-1} + \dots + q_m z^{-m})}{(C/R)_d} \frac{(C/R)_d}{1 - (C/R)_d}
$$

$$
= \frac{q_0 + q_1 z^{-1} + \ldots + q_m z^{-m}}{1 - z^{-N} (p_1 z^{-1} + p_2 z^{-2} + \ldots + p_m z^{-m})} \ \left(= \frac{P}{C} \cdot \frac{C/R}{1 - C/R} = \frac{P/R}{1 - C/R} \right)
$$

$$
HG(z) = \frac{C(z)}{P(z)} = \frac{B(z^{-1})z^{-N}}{A(z^{-1})} = \frac{q_0(b_1z^{-1} + b_2z^{-2} + \dots + b_mz^{-m})z^{-N}}{q_0(1 + a_1z^{-1} + \dots + a_mz^{-m})} = \frac{C/R}{P/R}
$$

By comparing $HG(z)$ and $1/G_c(z)$,

$$
q_1 = q_0 a_1 \t p_1 = q_0 b_1 \t \sum_{i=1}^{m} p_i = q_0 (b_1 + b_2 + \dots + b_m) = 1
$$

\n
$$
q_2 = q_0 a_2 \t p_2 = q_0 b_2 \t q_0 = \frac{1}{b_1 + b_2 + \dots + b_m} = u(0)
$$

\n
$$
q_m = q_0 a_m \t p_m = q_0 b_m \t q_i = a_i q_0 = u(i)
$$

\n
$$
\therefore G_c(z) = \frac{q_0 A(z^{-1})}{1 - q_0 B(z^{-1})z^{-N}}
$$

* Dahlin's Algorithm (also by Higham independently)

less demanding in terms of closed-loop performance

$$
\left(\frac{C}{R}\right)_d = \frac{e^{-hs}}{\lambda_s + 1}
$$
 (FOPDT type reference trajectory)

with ZOH,
$$
(C/R)_d = \frac{(1 - e^{-\Delta t/\lambda})}{1 - e^{-\Delta t/\tau} z^{-1}} z^{-N-1}
$$
 (let $a = e^{-\Delta t/\tau}$ and $h = \theta = N\Delta t$)

$$
G_{DC}(z) = \frac{1}{HG(z)} \frac{(C/R)_d}{1 - (C/R)_d} = \frac{1}{HG(z)} \frac{(1 - \alpha)z^{-N-1}}{1 - \alpha z^{-1} - (1 - \alpha)z^{-N-1}}
$$

The denominator is factored with $(1-z^{-1}) \rightarrow$ integrator \rightarrow no offset. λ : tuning parameter λ↑ : loosening control action (for inaccurate model)

 $\lambda \rightarrow 0$: G_{DC} = minimal prototype algorithm

Ex. 26.5 For Ex 26.4, set $\lambda = \Delta t = 1$, Find $G_{DC}(z)$

$$
\mathrm{Sol})
$$

$$
a = e^{-1} = 0.368 \t(N=0)
$$

\n
$$
G_{DC} = \frac{(1-a)z^{-1}}{1-az^{-1}-(1-a)z^{-1}} \frac{1}{HG(z)} = \frac{(1-a)z^{-1}}{1-z^{-1}} \frac{1}{HG(z)}
$$

\n
$$
= \frac{(1-a)z^{-1}}{1-z^{-1}} \cdot \frac{(1+a_1z^{-1}+a_2z^{-2})}{(b_1+b_2z^{-1})z^{-1}} = \frac{(1-a)(1+a_1z^{-1}+a_2z^{-2})}{(1-z^{-1})(b_1+b_2z^{-1})}
$$

\n
$$
= \frac{0.632(1-1.5353z^{-1}+0.5866z^{-2})}{0.0280(1-z^{-1})(1+0.8357z^{-1})}
$$
 (It has ringing pole)

For step change in set point,

$$
C(z) = \frac{0.632}{1 - 0.368z^{-1}} \cdot \frac{1}{1 - z^{-1}}
$$

\n
$$
\frac{P(z)}{R(z)} = \frac{C/R}{HG(z)} = \frac{0.632(1 - 1.5353z^{-1} + 0.5866z^{-2})}{0.0280(1 + 0.8357z^{-1})(1 - 0.368z^{-1})}
$$

\n \Rightarrow It shows ringing!

- Modification for ringing in Dahlin's algorithm

 \Rightarrow Set z=1 for ringing term

$$
0.0280(1+0.8357(1)^{-1})=0.0514
$$

$$
\Rightarrow \quad \overline{G}_{DC} = \frac{0.632(1 - 1.5353z^{-1} + 0.5866z^{-2})}{0.0514(1 - z^{-1})}
$$

 \Rightarrow Then, it's hard to predict the closed-loop behavior

- disadvantage : lack of predictability instead of ringing

* An analysis of Ringing

Ringing cause excessive wear in actuator (unique to discrete time direct synthesis method)

Let
$$
G_c(z) = \frac{1}{1 - p_1 z^{-1}} G_c'(z)
$$
 (where $G_c'(z)$ is the T.F. excluding the factor)

then

$$
P(z) = \left[\frac{1}{1 - p_1 z^{-1}} G_c'(z)\right] E(z)
$$

= $\frac{r_1}{1 - p_1 z^{-1}} + \text{Other Terms}$

 $\Rightarrow P(n \Delta t) = r_1 (p_1)^n +$ Other Terms

if $p_1 \langle 0, r_1 (p_1)^n$ alternates its sign as n increases

if p_1 is near origin, the ringing may not be noticeable.

The nonringing version of \overline{G}_{DC} for Ex 26.4 (since (C/R) _d≠ C/R for nonringing version)

$$
\frac{P(z)}{R(z)} = \frac{\overline{G_{DC}(z)E(z)}}{R(z)} = \overline{G_{DC}(z)} \left(1 - \frac{C(z)}{R(z)}\right) = \overline{G_{DC}} \left(1 - \frac{HG(z) \cdot \overline{G_{DC}(z)}}{1 + HG(z) \cdot \overline{G_{DC}(z)}}\right)
$$

$$
=\frac{G_{DC}(z)}{1+HG(z)\ \overline{G_{DC}(z)}}
$$

=
$$
\frac{(1-a)(1+a_1z^{-1}+a_2z^{-2})z^{-N-1}}{(b_1+b_2)(1-a_2z^{-1}-(1-a_1z^{-N-1})}
$$

=
$$
\frac{(b_1+b_2z^{-1})z^{-N-1}}{(1+a_1z^{-1}+a_2z^{-2})}\cdot\frac{(1-a)(1+a_1z^{-1}+a_2z^{-2})z^{-N-1}}{(b_1+b_2)(1-a_2z^{-1}-(1-a_1z^{-N-1})}
$$

=
$$
\frac{(1-a)(1+a_1z^{-1}+a_2z^{-2})}{(b_1+b_2)(1-a_2z^{-1}-(1-a_1z^{-N-1})+(b_1+b_2z^{-1})(1-a_2z^{-N-1})}
$$

If $N=0$, the denominator becomes

$$
(b_1 + b_2)(1 - a z^{-1} - z^{-1} + a z^{-1}) + (b_1 + b_2 z^{-1})(1 - a)z^{-1}
$$

= $(b_1 + b_2) - (a b_1 + b_2) z^{-1} + b_2 (1 - a) z^{-2}$

and ringing pole may exist.

If $N=1$, an additional ringing pole could apprear

As N increases, several ringing poles can apprear additionally.

* Vogel-Edgar Algorithm

Eliminate the ringing pole due to $HG(z)$ for process

$$
\left(\frac{C}{R}\right)_d = \frac{e^{-hs}}{\lambda_S + 1}
$$
. $\frac{N(HG(z))}{N(HG(1))}$ (denominator for offset-free response)

For
$$
\frac{(b_1 + b_2 z^{-1})z^{-N-1}}{1 + a_1 z^{-1} + a_2 z^{-2}}, \quad a = e^{-\Delta t/\lambda}
$$

$$
\left(\frac{C}{R}\right)_d = \frac{(1 - a)z^{-N-1}}{1 - a z^{-1}} \cdot \frac{b_1 + b_2 z^{-1}}{b_1 + b_2} \quad \Rightarrow \text{may slow down}
$$

$$
G_{VE}(z) = \frac{1}{HG(z)} \frac{(C/R)_d}{1 - (C/R)_d} = \frac{1 + a_1 z^{-1} + a_2 z^{-2}}{(b_1 + b_2 z^{-1})z^{-N-1}} \frac{\frac{(1 - \alpha)z^{-N-1}}{1 - \alpha z^{-1}} \frac{b_1 + b_2 z^{-1}}{b_1 + b_2}}{1 - \frac{(1 - \alpha)z^{-N-1}}{(1 - \alpha z^{-1})} \frac{b_1 + b_2 z^{-1}}{b_1 + b_2}}
$$

$$
= \frac{(1 + a_1 z^{-1} + a_2 z^{-2})(1 - \alpha)}{(b_1 + b_2)(1 - \alpha z^{-1}) - (1 - \alpha)(b_1 + b_2 z^{-1})z^{-N-1}}
$$

If $a_2 = b_2 = 0$ (a 1st order process), $\left(\frac{C}{R}\right)_d = \frac{(1-a)z^{-N-1}}{1-a z^{-1}}$ -> Dahlin's algorithm

$$
\frac{P(z)}{R(z)} = \frac{(C/R)_d}{HG(z)} = \frac{(1-\alpha)(1+a_1z^{-1}+a_2z^{-2})}{(b_1+b_2)(1-a_2z^{-1})}
$$

> No ringing problem ! (since a>0)

also λ is a tuning parameter!

If ringing poles appear, $G_{DC} \langle \overline{G}_{DC} \langle G_{VE} \rangle$ (better) If no ringing poles appear, $\overline{G}_{DC} \langle G_{DC} \rangle G_{VE}$ (better)

 G_{VE} can handle systems with positive zero as well as with simulated noise. G_{VE} and G_{DC} cannot handle unstable process due to imperfect process model.. G_{VE} shows good robustness (than G_{DC})

* Internal Model Control (IMC)

Figure 12.2. Feedback control strategies.

$$
C = \frac{G_c^* G}{1 + G_c^*(G - \widetilde{G})} R + \frac{1 - G_c^* \widetilde{G}}{1 + G_c^*(G - \widetilde{G})} L
$$

If $G = \widetilde{G}$, $C = G_c^* G R + (1 - G_c^* G) L$
 $\Rightarrow C/R = \widetilde{G}_+(z) f(z)$

Ex 26.6 Design an IMC for
$$
\tilde{G}(s) = e^{-2s}/(5s+1)
$$

For $\Delta t = 1$, $H\tilde{G}(z) = \frac{0.1813z^{-3}}{1 - 0.8187z^{-1}}$

sol)
$$
\widetilde{G}_+(z) = z^{-3}
$$
, $\widetilde{G}_-(z) = \frac{0.1813}{1 - 0.8187z^{-1}}$

$$
f(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}
$$
 (α is a tuning parameter)

$$
G_c^*(z) = \frac{1 - 0.8187z^{-1}}{0.1813} \frac{(1 - \alpha)}{1 - \alpha z^{-1}} : \text{IMC (lead - lag structure)}
$$

\n
$$
\Rightarrow (C/R) = z^{-3} \frac{(1 - \alpha)}{1 - \alpha z^{-1}}
$$

if $a=e^{-\Delta t/\lambda} \rightarrow$ Dahlin's controller if $\alpha = 0$ \rightarrow Deadbeat IMC \rightarrow minimal prototype controller.

The controller :

$$
G_c^* = \frac{1}{\widetilde{G}_-} \cdot f
$$

$$
\widetilde{G} = \widetilde{G}_+ \cdot \widetilde{G}_-\quad \text{(Stable process)}
$$

where

- here \widetilde{G}_+ : contains time delays and "OUC" zero with unit gain + "IUC" zero near $(-1,0)$
- \widetilde{G}_{-} : "IUC" zero and poles (invertible part)
- f : low pass filter $=\frac{1}{\sqrt{\pi}}$ $(\tau_{c} s+1)'$ for physical realizability and robustness -> Tuning parameters

26.4 Digital Feedforward Control

- Use with feedback controller normally
- The measured value of disturbance should be available
- Select G_f so that $C = R = 0$ (disturbance is cancelled)
	- \Rightarrow $C(n\Delta t) = 0$ at the sampling instants

(No specification on the response of intersampling period)

- Perfect control may not be attainable due to physical realizability and imperfect model even with continuous version

Figure 26.9 Block diagram for digital feedback/feedforward control.

$$
\Rightarrow LG_L(z) + LG_t(z) G_f(z) HG_v G_p(z) = 0
$$

$$
\therefore G_f = \frac{-LG_L(z)}{LG_I(z) HG_v G_p(z)}
$$

- Since $LG_L(z)/LG_t(z) \neq G_L(z)/G_t(z)$, in general, G_f cannot be obtained unless L is specified. (For the continuous case, L will be cancelled)
- However, $HG_L/HG_t = LG_L(z)/LG_t(z)$ if L is piecewise constant \Rightarrow Assumed that L can be approximated by a piecewise constant function.

- If
$$
G_t(s) = K_t e^{-\Theta_t s}
$$
 and $\Theta = T\Delta t$, $HG_t(z) = K_t z^{-T}$
\n $\Rightarrow G_f(z) = \frac{-H G_L(z)}{K_t z^{-T} H G_v G_p(z)}$

- For realizability $\Theta_L > (\Theta_t + \Theta_p)$ (where Θ_p is the process time delay)

 \Rightarrow Before L affects output through load T. F., MV must act on the process output!

<Other approach>

- Use a (lead-lag + time-delay) type controller

$$
G_f(z) = \frac{K_f(1 + b_f z^{-1})}{1 + a_f z^{-1}} z^{-N_f}
$$

Tuning parameters : K_f , a_f , b_f , N_f

- find $G_f(s)$ in continuous time domain, and then discretize!
- Ex.26.7 A small distillation column separating methanol and water is controlled by reflux flow rate for the methanol composition on the top. The major disturbance is the composition of the feed.

$$
G_v G_p = \frac{-5e^{-4s}}{(5s+1)(3s+1)}
$$
, $G_t = 0.2$

$$
G_L = \frac{1.5e^{-4s}}{(7s+1)(2s+1)}
$$
 (time unit : minute)

 Δt = 1min, L is changed in a piecewise constant manner.

a) Dynamic feedforward Controller

$$
G_{f} = \frac{-HG_{L}(z)}{HG_{t}HG_{v}G_{p}(z)},
$$
\n
$$
HG_{v}G_{p}(z) = \frac{(-0.1399z^{-1} - 0.1171z^{-2})z^{-4}}{1 - 1.5353z^{-1} + 0.5866z^{-2}}
$$
\n
$$
HG_{L}(z) = \frac{(0.0435z^{-1} + 0.0351z^{-2})z^{-4}}{1 - 1.4734z^{-1} + 0.5258z^{-2}} \qquad G_{t} = K_{t} = 0.2
$$
\n
$$
G_{f}(z) = \frac{-0.2174z^{-1} + 0.1583z^{-2} + 0.1419z^{-3} - 0.1029z^{-4}}{-0.1399z^{-1} + 0.089z^{-2} + 0.099z^{-3} - 0.0616z^{-4}}
$$
\n
$$
zeros: -0.2174(1 - 0.8208z^{-1})(1 + 0.8071z^{-1})(1 - 0.7144z^{-1})
$$
\n
$$
poles: -0.1399(1 - 0.8663z^{-1})(1 + 0.8372z^{-1})(1 - 0.6071z^{-1})
$$
\n
$$
\Rightarrow small size \text{ ringing can appear! (Not much noticeable)
$$

b) Steady state feedforward controller : $G_f(z \rightarrow 1) = 1.5$

Department of Chemical Engineering, Korea University Digital Process Control 50

c) lead-lag type FF controller ($N_f=0$)

$$
\frac{K_f(1+b_f)}{(1+a_f)} = 1.5 \Rightarrow \text{Choose } a_f \text{ and } b_f
$$

\n
$$
\Rightarrow \text{ by visual tuning } a_f = -0.9, \quad b_f = -0.89
$$

\n
$$
G_f = \frac{1.0112(1-0.89z^{-1})}{1-0.9z^{-1}}
$$

26.5 Combined Load Estimation and Time-delay Compensation

* Analytical Predictor (Doss and Moore, 1982)

 $HG =$ actual process $G^*_{\mathsf{C}} =$ controller
 $H\widetilde{G} =$ process model $G_{\mathsf{L}} =$ load transfer function
 $A^* =$ disturbance predictor/filter $\hat{d}^N = \tilde{d}$ predicted N steps ahead Figure 26.12 Model-predictive block diagram for analytical predictor

Suppose L is a step function (HG_L can be used) and $HG_L(z) = HG(z) = HG^*(z)z^{-N}$ and perfect model is used, Then

Figure 26.13 Alternative block diagram for the analytical predictor.

$$
C(z) = \frac{G_c(z)HG(z)}{1 + G_c(z)HG^*(z)} R(z) + \frac{HG(z)}{1 + G_c(z)HG^*(z)} L(z)
$$

- \Rightarrow Char. equation does not contain a time delay
- \Rightarrow increased stability margin of $G_c(z)$
- \Rightarrow z^{+N} should be implemented indirectly!
- \Rightarrow AP can handle only if $HG_L= HG_P$ -> if not, use GAP!

* Generalized Analytical Predictor (GAP)

- Assume \tilde{G} and G_L are FOPDT and No modeling error ($G = \tilde{G}$)
- \Rightarrow $\tilde{d}(z) = C(z) \tilde{C}(z)$ \Rightarrow $\hat{d}^{N}(z)$ should be estimated

- Assume L is constant over the prediction horizon N (or $N+1$) and

$$
H\ \widetilde{G}_L(z) = \frac{\overline{b}z^{-1}}{1 - \overline{az}^{-1}} \text{ (No time delay, 1st order) } (\widetilde{G}_L \neq \widetilde{G} \text{ not as in AP})
$$
\n
$$
\widetilde{d}(z) = HG_L(z)L(z) \text{ if } G = \widetilde{G} \ (H\ \widetilde{G}_L \rightarrow HG_L)
$$
\n
$$
\Rightarrow \widetilde{d}(z) = \frac{\overline{b}z^{-1}}{1 - \overline{az}^{-1}}L(z) \Rightarrow (1 - \overline{az}^{-1})\widetilde{d}(z) = \overline{b}z^{-1}L(z) \Rightarrow \widetilde{d}_k = \overline{a}\ \widetilde{d}_{k-1} + \overline{b}L_{k-1}
$$

- Assume a step change in load occurred at time $k-1$

$$
\Rightarrow \text{ estimated} \quad \widehat{L}_{k-1} = \frac{1}{b} (\widetilde{d}_k - \overline{a} \widetilde{d}_{k-1}) \Rightarrow z^{-1} \widehat{L}(z) = \frac{1 - \overline{az}^{-1}}{b} \widetilde{d}(z)
$$
\n
$$
\widehat{d}_{k+1} = \overline{a} \widetilde{d}_k + \overline{b} \ \widehat{L}_{k-1}
$$
\n
$$
\widehat{d}_{k+N} = \overline{a} \ \widehat{d}_{k+N-1} + \overline{b} \ \widehat{L}_{k-1}
$$
\n
$$
\Rightarrow \ \widehat{d}_{k+N} = \overline{a}^N \widetilde{d}_k + \frac{(1 - \overline{a}^N)}{(1 - \overline{a})} \overline{b} \ \widehat{L}_{k-1} \quad \widetilde{d}_k \text{ : measured;} \qquad \widehat{L}_{k-1} \text{ constant)}
$$

- Since \tilde{d}_k data may be noisy, use filter for $\hat{L}(z)$

$$
z^{-1}\widehat{L}(z) = F_L(z) \frac{(1 - \frac{1}{a}z^{-1})}{b} \widetilde{d}(z)
$$

where $F_L(z) = \frac{1-\beta}{1-\beta z^{-1}}$, $0 \le \beta < 1$ first order filter tuning parameter - From Block Diagram,

$$
\begin{aligned}\n\hat{a}^N(z) &= A^*(z) \left[C(z) - \tilde{C}(z) \right] \\
&= \frac{-N}{a} \tilde{a}(z) + \frac{1 - \frac{-N}{a}}{1 - a} \bar{b}(z^{-1} \hat{L}(z)) \\
&= \frac{-N}{a} \left[C(z) - \tilde{C}(z) \right] + \frac{1 - \frac{-N}{a}}{1 - a} F_L(z) \left(1 - \frac{-N}{a} \right) \left[C(z) - \tilde{C}(z) \right] \\
&= \left\{ \begin{array}{l} -N + \frac{1 - \frac{-N}{a}}{1 - a} F_L(z) \left(1 - \frac{-N}{a} \right) \right] \left[C(z) - \tilde{C}(z) \right] \\
\therefore A^*(z) &= \frac{-N}{a} + \frac{1 - \frac{-N}{a}}{1 - a} F_L(z) \left(1 - \frac{-N}{a} \right)\n\end{array}\n\end{aligned}
$$

- Also, G_{C}^* can be designed by IMC design procedure.

Ex. 26.8 $G(s) = \frac{e^{-2s}}{5s+1}$ is controlled using an IMC controller ($\Delta t = 1$)

Assume $G = \tilde{G}$, $G_L = \frac{1}{s+1}$, $L = \frac{1}{s} e^{-5s}$

sol) IMC : $G_c^* = \frac{1 - 0.8183z^{-1}}{0.1817}$ for $\alpha = 0$ (deadbeat design)

$$
(A^* = 1, \ \tau_L = 0)
$$

$$
H\overline{G_L}(z) = \frac{(1 - a_L)z^{-1}}{1 - a_L z^{-1}} \ (a_L = e^{-\Delta t/\tau_L})
$$

AP : using $H \widetilde{G}_L = H \widetilde{G}$ (model error $\tau_L = 5$) : overcorrection GAP : perfect prediction and $\tau_L = 1$: No modeling error (better due to load prediction)

- if G_L is FOPDT, only τ_L needs to be known
- (∵ $A^* = f(a)$ even though GAP need load filtering)