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Chap. 26 Design of Digital Controllers

26.1 Digital PID Controller

p( t)= p+Kc[e( t)+
1
τ
I

⌠
⌡

t

0
e(t')dt'+τ

D
de(t)
dt

]

⌠
⌡

t

0
e(t')dt'≅ ∑

n

k=1
ekΔt,      

de
dt

=
en-e n-1

Δt

       (rectangular rule)     (backward difference)

Position Algorithm

pn= p+Kc[en+
Δt
τ
I
∑
n

k=1
ek+

τ
D

Δt
(en-e n-1)]

Let the deviation variable pn'= pn- p

Z(en)=E(z), Z(e n- i)= z
- i
E(z)

∴ P'(z)=Kc[E(z)+
Δt
τ
I
(z

-n+1
+z

-n+2
+....+z

-1
+1)E(z)+

τ
D

Δt
(1-z

-1
)E(z)]

     =Kc [1+
Δt
τ
I
(

1

1-z
-1 )+

τ
D

Δt
(1-z -1)]E(z) (as n → ∞)

D(z)=
P'(z)
E(z)

=Kc [1+
Δt
τ
I
(

1

1-z -1 )+
τ
D

Δt
(1-z -1)] : Position Form

Velocity form (avoid summation, no specification of p)

Δpn= pn-p n-1=p'n-p' n-1

Δpn=Kc[ (en-e n-1)+
Δt
τ
I
en+

τ
D

Δt
(en-2e n-1+e n-2)]

ΔP(z)=Kc[ (1-z
-1)+

Δt
τ
I
+

τ
D

Δt
(1-2z -1+z -2)]E(z) : Velocity Form

- (position form) x (1-z -1)  = (velocity form)
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For integral, use trapezoidal approximation

⌠
⌡

t

0
e(t')dt'≅ ∑

n

k=1
(
ek+e k-1

2
)Δt

⇒ ΔP(z)=Kc[ (1-z
-1

)+
Δt
2τ I

(1+z
-1

)+
τ
D

Δt
(1-2z

-1
+z

-2
)]E(z)

→ more accurate, but may not achieve better performance 

(slightly different values of controller settings)

Features of Digital PID Controller

1. Elimination of Reset windup

- Error summation grows very large ⇒ reset windup

- Saturated controller output ⇒ Sustained error for a while

  ⇒ big summation term ⇒ errors with opposite sign should cancel the summation over 

100% ⇒ cannot act immediately even though the error sign changed!

- Startup situation under automatic control

For Position algorithm,

a. Place an upper limit on the value of summation

     (when the controller saturates, suspend the summation until ...)

b. Back calculate the value of en  that just cause the controller to saturate. (Use this 

actual value as e n-1
 in the next controller calc.)

(if saturated,)

100= p+Kc[en+
Δt
τ
I

∑
n-1

k=1
ek+

Δt
τ
I
en+

τ
D

Δt
(en-e n-1)]

⇒ en=[
(100- p)
Kc

-
Δt
τ
I

∑
n-1

k=1
ek+

τ
D

Δt
e n-1]/ (1+

Δt
τ
I
+

τ
D

Δt
)

(next)

p= p+Kc[en+
Δt
τ
I
( ∑
n-1

k=1
ek+

(100- p)
k 2

-
Δt
τ
i
. . .)+

τ
D

Δt
(en-

Δt
τ
I
(. . .))]
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In velocity form : No reset windup problem, but always monitor pn  so that Δp  can 

be ignored if pn  saturates.

2. Elimination of Derivative kick

a. en→-bn  (if en= rn-bn)

b. Step change in set point →  ramp

  (Limit the rate of change in rn)

3. Effect of Saturation on Controller Performance

Suppose 
kcτD
Δt

=100  (∵ Small Δt) and en  : 0 - 100 %, pn  : 0 - 100 %

⇒ if Δen = 1 %, Δp=100  % ⇒ exceed the saturation limit

⇒ be careful to select the controller settings and Δt to avoid scaling problem

4. Comparison of Position and velocity Algorithm

Position form Velocity form

p  required     X

reset windup No reset windup

initialization is simple Pulse counter of stepping motor required

(Just take the signal of I-mode is always required (to avoid drift)

  final control element) Δp=Kc(en-e n-1)=Kc(-bn+b n-1)

(No setpoint)

5. Use of Dimensionless Controller Gain

Kc  will be dimensionless in commercial controller, but input/output values can be 

shown in engineering unit for convenience ⇒ Not dimensionless!!

6. Time delay Compensation

Smith predictor (Model-based approach)

(Digital version : analytical predictor)

⇒ If there are large estimation error (±30%) in time delay, PI will perform better.
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~ : model

G̃= G̃
*
⋅e - θ̃ s

G̃
*
 : w/o time delay

E'=E- C̃ 1=R- C̃ 1-(C- C̃ 2 )

if G= G̃, C̃ 2=C  and E'=R- C̃ 1
 (No time delay in C̃ 1

)

Gc'=
P
E

=
Gc

1+Gc G̃
*
(1-e

- θ̃ s
)

 For G= G̃, 

 C
R

=
GcG

*e -θ s

1+GcG
*

 

by contrast conventional feedback 

GcG
*
e

-θ s

1+GcG
*e -θ s

for load charge

C
L

=
GL[1+GcG

*(1-e -θ s)]

1+GcG
*

Physical Realizability of Digital Controllers

Gc(z)=
b 0+b 1z

-1+b 2z
-2....bkz

- k

a 0+a 1z
-1+a 2z

-2....amz
-m

  From above eq'n, a0≠0 → physically realizable

   (not depending on future inputs)
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26.2 Selection of Digital PID Controller Settings

1. Conversion of Continuous Controller Settings

- for small Δt, finite difference approximation is reasonable

   ( Δt/τ I≤0.1)

- ZOH causes effective one time delay

∴ let θ→θ+
Δt
2

 and compute Kc, τ
I
, τ

D

2. Digital Controllers based on Integral Error Criterion

- ISE, IAE, ITAE

- From the digital simulation, digital PI controller tuning parameters were obtained 

based on models.

- From the model characteristic ( K,θ,τ)

   ⇒ Find Kc  and τ
I
 depending on Δt

- Lopez et al :

When θ/τ is very small or Δt/τ  is large, Kc  must be modified.

- Mosler et al  : Gain margin = 1.7 and KC = 0.6 KCU

  For large Δt, PU  and KC/KCU  should be modified.
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3. Pole Placement

1+Gc(z)HG(z)=0  ⇒ (1-a 1z
-1)(1-a 2z

-1)...(1-anz
-1)=0

Assign desirable a i's in z-domain

⇒ For continuous system, it's a very good approach, But for discrete system, 

precaution should be taken since the location of zero is also very important!

⇒ Candidate should be checked by simulation.

26.3 Direct Synthesis Methods

- Closed-loop T. F.

 C(z)
R(z)

=
HG(z)Gc(z)

1+HG(z)Gc(z)
 where HG(z)=KmHGvGp(z)

- If Km, Gv, Gp, Gc  are specified, 
C
R

 can be derived from these information.

- In the same manner, specify Km, Gp, Gv, (C/R) d, then Gc  can be calculated.

Gc(z)=
1

HG(z)

(C/R) d
1-(C/R) d

 ( HG(z)  will be replaced by HG̃ ( z ))

- Gc(z)  has the reciprocal of process, 
1

HG(z)

- Poles of process become zeros of controller unless some are cancelled by (C/R) d

  ⇒ Stability problem even though the process is stable.

- Theoretically, Gc(z)⋅HG(z)=
(C/R) d

1-(C/R) d
 (No stability problem)

- Actually, Gc(z)  cannot cancel the unstable zeros exactly! (due to imperfect models)

- If the system, HG(z)  has a time delay, Gc  will be have prediction 

⇒ physical realizability problems

⇒ (C/R) d  should contain the z
-N-1  (-1 is due to effective time delay)
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* Minimal Prototype Algorithm

<Design criteria for this algorithm>

1. No offset (requires integral action)

2. Rise time should equal the minimum no. of Δt

3. The settling time should be finite

4. Gc(z)  and (C/R) d  must be physically realizable.

- Including a time delay in (C/R) d  ⇒ Gc(z)  will be physically realizable.

∴  (C/R) d=z
-N-1  ⇒ follow the set point exactly except the required time delay

Ex 26.3  (K = 1, a  = 0.8187, Δt = 0.2, τ = 1, θ = 0.2)

  HG(z) =
K(1-a)z -N-1

1-az
-2

 ⇒ develop the minimal prototype controller!

Sol)

let (C/R) d=z
-N-1  as ( (C/R) | z= 1

 → no offset)

∴ Gc(z) =
1-az -1

K(1-a)z -N-1
z -N-1

1-z -N-1 =
(1-az -1)

K(1-a)(1-z -N-1)
=

1-0.8187z -1

0.1813(1-z -2)

for ramp change in set point (rn = 0.1n, n=0 to 9, rn = 1 for n ≥ 10),

for load change

If L( s)=
1
s
, GL(s)=

e -θ s

τs+1

Z[GLL(s)]=
z -N-1 (1-e -Δ t/τ)

(1-e
-Δ t/τ

z
-1

) (1-z
-1

)
=

0.1813z -2

(1-0.8187z
-1

)(1-z
-1

)
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C(z) =
GLL(z)

1+Gc(z)HG(z)
=

GLL(z)

1+(C/R) d/(1-(C/R)d)

=
GLL(z)(1-(C/R) d)

1-(C/R)d+(C/R)d
=GcL(z)(1-(C/R) d)

=
0.1813z

-2
(1-z

-2
)

(1-0.8187z -1)(1-z -1)
=

0.1813z
-2

(1+z
-1

)

1-0.8187z -1

⇒ Gc(z)  has (1-z -N-1)  in the denominator and for all N, it has also (1-z -1)   

 which provides integral action !

Ex 26.4 For G(s)=1/[ (5s+1)(3s+1)], (N = 0 and Δt = 1)

 HG(z) =
(b 1+b 2z

-1)z -N-1

1+a 1z
-1+a 2z

-2
  (a1 = -1.5353. a2 = 0.5866, b1 = 0.0280, b2  = 0.0234)

⇒  minimal prototype controller ?

Sol)

Let (C/R) d= z
-1  for N=0

G c(z) =
1
HG

(C/R) d
1-(C/R) d

=
1+ a 1z

- 1+ a 2z
- 2

b 1z
- 1

+b 2z
- 2

z - 1

1-z
- 1

=
1+ a 1z

- 1
+ a 2z

- 2

b 1+(b 2-b 1)z
- 1-b 2z

- 2 =
1-1.5353z - 1+0.5866z - 2

0.0280-0.0046z - 1-0.0234z - 2

⇒ physically realizable, but intersample ripple (ringing)

   (1-0.8195z
-1

)(1-0.7158z
-1

)

0.028(1-z-1)(1+0.8357z-1)
   (ringing pole in the denominator)

(Not appeared in the output)
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<To avoid intersample ripple>

To reach the final steady state, use at least m+N  sampling periods

 ( m  : order of denom. N=θ/Δt)

⇒ (C/R)d=z
-N(γ 1z

-1+γ
2z

-2+......+γ
mz

-m)

where 0≤γ
i≤1

Ex) m=2, N=0  -> (C/R) d=γ
1z

-1+γ
2z

-2

For step change, 1

1-z
-1

C=
γ

1z
-1

+γ
2z

-2

1-z -1 =γ
1z

-1
+(γ 1+γ

2)(z
-2

+z
-3

+......)

for no offset -> γ
1+γ

2=1

for no over shoot -> r 1 < 1

-> It takes two steps to reach steady state.

For Ex26.4,

Gc(z) =
1
HG

(C/R) d
1-(C/R) d

=
1+a 1z

-1+a 2z
-2

b 1z
-1

+b 2z
-2

γ
1z

-1+γ
2z

-2

1-γ
1z

-1
-γ

2z
-2

=
(1+a 1z

-1
+a 2z

-2
)(γ 1z

-1
+γ

2z
-2

)

z-1(b 1+b 2z
-1)(1-γ

1z
-1-γ

2z
-2)

if γ
2=1-γ

1 (γ 1<1), third term in the denominator is (1+(1-γ
1 )z

-1)(1-z-1)

For rippling, examine P(z)
R

=
Gc(z)E(z)

R
=

1
HG(z)

C/R・R・(1-C/R)
1-C/R

1
R

=
C/R
HG(z)

=
(1-a 1z

-1a 2z
-2)(γ 1z

-1+γ
2z

-2)

z-1(b 1+b 2z
-1)

 (possible ringing pole in denom.)

⇒ γ
1= b 1/(b 1+b 2)  for no rippling ⇒ (C/R) d=(b 1z

-1+b 2z
-2)/(b 1+b 2)

<The disadvantages of the minimal prototype controller>

1. The design specifies only the response at the sampling instants

  --> intersample ripple or large overshoot due to vigorous control action caused by 

tight specification

2. The controller is highly tuned for the specific type of changes.

     good set point tracking    ⇐X⇒     good load regulation
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3. force all poles --> around origin of the z-plane for rapid response 

  --> extremely sensitive to parameter changes in the model

* Deadbeat Controller (special case of m. p. c with no rippling)

- C(z)  will follow R(z)  after (m+N)  steps exactly (m : tuning parameter)

C
R

=(p 1z
-1+p 2z

-2+.....+pmz
-m)z -N

where p 1+p 2+......+pm=1

- Others are same as minimal prototype controller

(finite settling, no offset, physical realizability)

- Controller output, P(z)  will stay at the same value after m step for a step change 

in set point (No rippling)

P(z)=(q 0+q 1z
-1+.....+qmz

-m)R(z)   → R(z) needs not be specified

where q 0+q 1+.....+qm=u(m)=
1
Kp

 (1/(steady state gain))

Gc =
1

HG(z)
⋅

(C/R) d
1- (C/R) d

=
(q 0+q 1z

-1+...+qmz
-m)

(C/R) d

(C/R) d
1- (C/R) d

       =
q 0+q 1z

-1+...+qmz
-m

1-z
-N

(p 1z
-1

+p 2z
-2

+....+pmz
-m

)
 (= P

C
⋅

C/R
1-C/R

=
P/R

1-C/R )

HG(z)=
C(z)
P(z)

=
B(z

-1
)z

-N

A(z-1)
=
q 0(b 1z

-1+b 2z
-2+...+bmz

-m)z-N

q 0(1+a 1z
-1+...+amz

-m)
=
C/R
P/R

By comparing HG(z) and 1/Gc(z),

q 1= q 0a 1

q 2=q 0a 2

qm=q 0am

   

p 1= q 0b 1

p 2=q 0b 2

pm=q 0bm

        

∑
m

1
p i= q 0(b 1+ b 2+.....+ bm)= 1

q 0=
1

b 1+ b 2+.....bm
= u( 0)

q i= a i q 0= u( i)

∴ Gc(z)=
q 0A(z -1)

1-q 0B(z
-1

)z
-N
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* Dahlin's Algorithm (also by Higham independently)

less demanding in terms of closed-loop performance

( CR )
d
=
e - hs

λs+1
 (FOPDT type reference trajectory)

with ZOH, (C/R) d=
( 1-e -Δ t/λ)

1-e -Δ t/τz -1 z
-N-1   (let α=e -Δ t/τ  and h = θ =NΔt)

GDC(z)=
1

HG(z)

(C/R) d
1- (C/R) d

=
1

HG(z)
(1-α)z -N-1

1-αz -1
-(1-α)z -N-1

The denominator is factored with (1-z
-1

)   → integrator → no offset.

λ     : tuning parameter

λ↑   : loosening control action (for inaccurate model) 

λ→ 0 : GDC  = minimal prototype algorithm

Ex. 26.5  For Ex 26.4, set λ=Δt=1, Find GDC(z)  

Sol)

α= e -1=0.368  ( N=0)

GDC =
(1-α)z -1

1-αz -1
-(1-α)z -1

1
HG(z)

=
(1-α)z -1

1-z
-1

1
HG(z)

=
(1-α)z -1

1-z -1 ⋅
(1+a 1z

-1+a 2z
-2)

(b 1+b 2z
-1)z -1 =

(1-α) (1+a 1z
-1+a 2z

-2)

(1-z -1)(b 1+b 2z
-1)

    =
0.632(1-1.5353z

-1
+0.5866z

-2
)

0.0280(1-z -1)(1+0.8357z -1)
(It has ringing pole)

For step change in set point,

C(z) =
0.632

1-0.368z -1 ⋅
1

1-z -1

P(z)
R(z)

=
C/R
HG(z)

=
0.632(1-1.5353z -1+0.5866z -2)

0.0280(1+0.8357z -1)(1-0.368z -1)

 ⇒  It shows ringing!

- Modification for ringing in Dahlin's algorithm

⇒ Set z=1 for ringing term
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0.0280(1+0.8357(1) -1)=0.0514

⇒ GDC=
0.632(1-1.5353z -1+0.5866z -2)

0.0514(1-z
-1

)

⇒ Then, it's hard to predict the closed-loop behavior

   - disadvantage : lack of predictability instead of ringing

* An analysis of  Ringing

Ringing cause excessive wear in actuator

(unique to discrete time direct synthesis method)

Let Gc(z)=
1

1-p 1z
-1 Gc'(z)   (where Gc'(z)  is the T.F. excluding the factor)

then 

P(z) = [
1

1-p 1z
-1 Gc'(z)]E(z)

=
r 1

1-p 1z
-1 + Other  Terms

⇒ P(nΔt)= r 1 (p 1)
n
+  Other Terms

if p 1 <0, r 1 (p 1)
n  alternates its sign as n increases

if p 1  is near origin, the ringing may not be noticeable.

The nonringing version of GDC  for Ex 26.4

(since (C/R) d≠C/R  for nonringing version)

P(z)
R(z)

=
GDC (z)E(z)

R(z)
= GDC (z) (1-

C(z)
R(z)

)= GDC (1-
HG(z)⋅ GDC (z)

1+HG(z) GDC (z)
)

    

=
GDC (z)

1+HG(z) GDC (z)

=

(1-α) (1+a 1z
-1+a 2z

-2)z -N-1

(b 1+b 2)(1-αz -1-(1-α)z -N-1)

1+
(b 1+b 2z

-1
)z

-N-1

(1+a 1z
-1+a 2z

-2)
⋅

(1-α) (1+a 1z
-1

+a 2z
-2

)z
-N-1

(b 1+b 2)(1-αz -1-(1-α)z -N-1)

=
(1-α) (1+a 1z

-1+a 2z
-2)

(b 1+b 2)(1-αz -1
-(1-α)z -N-1

)+(b 1+b 2z
-1

)(1-α)z -N-1
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If N=0, the denominator becomes

 (b 1 +b 2)(1-αz-1-z-1+αz-1)+(b 1+b 2z
-1)(1-α)z-1

=(b 1+b 2)-(αb 1+b 2)z
-1+b 2(1-α)z-2

and ringing pole may exist.

If N=1,an additional ringing pole could apprear

As N increases, several ringing poles can apprear additionally.

* Vogel-Edgar Algorithm

Eliminate the ringing pole due to HG(z)  for process

( CR )
d
=
e

- hs

λs+1
⋅
N(HG(z))
N(HG(1))

 (denominator for offset-free response)

For 
(b 1+b2z

-1)z -N-1

1+a1z
-1

+a 2z
-2

, α=e -Δt /λ

( CR )
d
=

(1-α)z -N-1

1-αz -1 ⋅
b 1+b 2z

-1

b 1+b 2
  -> may slow down

G VE(z)=
1

HG(z)

(C/R) d
1-(C/R) d

=
1+a 1z

-1+a 2z
-2

(b 1+b 2z
-1

)z
-N-1

(1-α)z -N-1

1-αz -1

b 1+b 2z
-1

b 1+b 2

1-
(1-α)z -N-1

(1-αz -1)

b 1+b 2z
-1

b 1+b 2

=
(1+a 1z

-1
+a 2z

-2
)(1-α)

(b 1+b 2)(1-αz -1)-(1-α) (b 1+b 2z
-1)z -N-1

If a 2= b 2=0  (a 1st order process), ( CR )
d
=

(1-α)z -N-1

1-αz -1
 

 -> Dahlin's algorithm

P(z)
R(z)

=
(C/R) d
HG(z)

=
(1-α) (1+a 1z

-1
+a 2z

-2
)

(b 1+b 2)(1-αz -1)
 

-> No ringing problem !  (since α>0)

also λ is a tuning parameter!

If ringing poles appear,    GDC< GDC<GVE  (better)

If no ringing poles appear, GDC<GDC<GVE  (better)

GVE  can handle systems with positive zero as well as with simulated noise.

GVE  and GDC  cannot handle unstable process due to imperfect process model..

GVE  shows good robustness (than GDC)
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* Internal Model Control (IMC)

The controller :

    Gc
*
=

1

G̃-

⋅f

  G̃= G̃+⋅ G̃-
  (Stable process)

where

G̃+
 : contains time delays and

       "OUC" zero with unit gain +
        "IUC" zero near (-1,0)

G̃-
 :  "IUC" zero and poles

        (invertible part)

  f   : low pass filter =
1

(τ c s+1) r

       for physical realizability and
        robustness 
       -> Tuning parameters

C=
Gc

*G

1+ Gc
*
(G- G̃)

R+
1-G*

cG̃

1+G
*
c (G- G̃)

L

If G= G̃,   C=G*
c G R+(1-G*

c G)L

   ⇒ C/R= G̃+ (z) f(z)

Ex 26.6  Design an IMC for G̃( s)= e -2s/ (5s+1)

For Δt=1, H G̃ ( z )=
0.1813z -3

1-0.8187z
-1

sol) G̃+ (z)= z
-3, G̃- (z)=

0.1813

1-0.8187z
-1

f(z) =
1-α

1-αz -1
 ( α  is a tuning parameter)

G*
c(z)=

1-0.8187z
-1

0.1813
(1-α)

1-αz -1
 : IMC (lead - lag structure)

  ⇒ (C/R)= z
-3 (1-α)

1-αz -1

if α=e -Δ t/λ  → Dahlin's controller

if α=0      → Deadbeat IMC → minimal prototype controller.
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26.4 Digital Feedforward Control

- Use with feedback controller normally

- The measured value of disturbance should be available

- Select Gf  so that C=R=0  (disturbance is cancelled)

⇒ C(nΔt)=0  at the sampling instants

    (No specification on the response of intersampling period)

- Perfect control may not be attainable due to physical realizability and imperfect model 

even with continuous version

⇒ LGL(z)+LGt(z)Gf(z)HGvGp(z)= 0

∴ Gf=
-LGL(z)

LGt(z)HGvGp(z)

- Since LGL(z)/LGt(z)≠GL(z)/Gt(z), in general, Gf  cannot be obtained unless L is 

specified. (For the continuous case, L  will be cancelled)

- However, HGL/HGt=LGL(z)/LGt(z)  if L is piecewise constant

⇒ Assumed that L can be approximated by a piecewise constant function.

- If Gt(s)=Kt e
-θ

t s  and θ=TΔt , HGt(z)=Kt z
-T

⇒ Gf (z)=
-HGL (z)

Kt z
-T
HGvGp(z)

- For realizability θ
L>(θt+θ

p)  (where θ
p
 is the process time delay)

⇒ Before L affects output through load T. F., MV must act on the process output!
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<Other approach>

- Use a (lead-lag + time-delay) type controller

Gf (z)=
Kf (1+b f z

-1)

1+a f z
-1 z

-Nf

Tuning parameters : K f , a f , b f , N f

- find Gf ( s)  in continuous time domain, and then discretize!

Ex.26.7  A small distillation column separating methanol and water is controlled by 

reflux flow rate for the methanol composition on the top.  The major 

disturbance is the composition of the feed.

GvGp=
-5e -4s

(5s+1) (3s+1)
 , Gt=0.2

GL=
1.5e -4s

(7s+1) (2s+1)
 (time unit : minute)

Δt  = 1min, L is changed in a piecewise constant manner.

a) Dynamic feedforward Controller

Gf=
-HGL (z)

HGtHGvGp(z)
, 

HGvGp(z)=
( -0.1399z

-1
-0.1171z

-2
)z

-4

1-1.5353z -1+0.5866z -2
   

HGL(z)=
( 0.0435z -1+0.0351z -2)z -4

1-1.4734z -1+0.5258z -2
   Gt=Kt=0.2

Gf(z)=
-0.2174z -1+0.1583z -2+0.1419z -3-0.1029z -4

-0.1399z
-1

+0.089z
-2

+0.099z
-3

-0.0616z
-4

zeros ; -0.2174(1-0.8208z
-1

)(1+0.8071z
-1

)(1-0.7144z
-1

)

poles ; -0.1399(1-0.8663z -1)(1+0.8372z -1)(1-0.6071z -1)

⇒ small size ringing can appear! (Not much noticeable)

b) Steady state feedforward controller : Gf (z→1)=1.5
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c) lead-lag type FF controller ( Nf=0)

Kf (1+b f )

(1+a f )
=1.5  ⇒ Choose af  and b f

⇒ by visual tuning af  = -0.9, b f  = -0.89

Gf=
1.0112(1-0.89z -1)

1-0.9z
-1

 26.5 Combined Load Estimation and Time-delay Compensation

* Analytical Predictor (Doss and Moore, 1982)

Suppose L is a step function ( HGL  can be used) and HGL(z)=HG(z)=HG
*(z)z -N  

and perfect model is used,  Then
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C(z)=
Gc(z)HG(z)

1+Gc(z)HG
*(z)

R(z)+
HG(z)

1+Gc(z)HG
*(z)

L(z)

⇒ Char. equation does not contain a time delay

⇒ increased stability margin of Gc(z)

⇒ z +N   should be implemented indirectly!

⇒ AP can handle only if HGL=HGP  -> if not, use GAP!

* Generalized Analytical Predictor (GAP)

  Assume G̃  and GL  are FOPDT and No modeling error ( G= G̃)

⇒ d̃( z)=C(z)- C̃( z)

⇒ d̂
N
(z)  should be estimated

- Assume L is constant over the prediction horizon N (or N+1) and

H G̃L (z)=
bz -1

1- az -1
 (No time delay, 1st order) ( G̃L≠G̃  not as in AP)

d̃( z) = HGL (z)L(z)  if G= G̃  ( H G̃L→HGL)

⇒ d̃( z)=
bz -1

1- az -1 L(z)  ⇒ (1- az
-1

) d̃( z)= b z
-1
L(z)  ⇒ d̃ k= a d̃k- 1+ bLk-1

- Assume a step change in load occurred at time k-1

⇒ estimated L̂k - 1=
1

b
( d̃ k- a d̃ k- 1)  ⇒ z

-1L̂( z )=
1- az -1

b
d̃( z)

d̂ k + 1= a d̃k+ b L̂ k - 1

d̂ k+ N= a d̂k+ N- 1+ b L̂ k - 1
 

⇒ d̂ k + N= a
N
d̃ k+

(1- a
N
)

(1- a)
b L̂k - 1

 ( d̃ k  : measured;   L̂k - 1
: constant)

- Since d̃ k  data may be noisy, use filter for L̂( z )

z -1L̂( z )=FL(z)
(1- a z -1)

b
d̃( z)

where FL(z)=
1-β

1-βz -1
,  0≤β< 1

first order filter   tuning parameter
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- From Block Diagram, 

d̂
N
(z) =A *(z) [C(z)- C̃( z )]

= a
N
d̃( z)+

1- a
N

1- a
b(z -1 L̂( z ))

= a
N
[C(z)- C̃( z )]+

1- a
N

1- a
FL(z) (1- az

-1)[C(z)- C̃ ( z) ]

= { aN+ 1- a
N

1- a
FL(z) (1- az

-1
)}[C(z)- C̃ ( z )]

∴ A *(z)= a
N
+

1- a
N

1- a
FL(z) (1- az

-1)

- Also, GC
*  can be designed by IMC design procedure.

Ex. 26.8  G( s)=
e -2s

5s+1
 is controlled using an IMC controller ( Δt=1)

Assume G= G̃, GL=
1
s+1

, L=
1
s
e -5s

sol) IMC : Gc
*=

1-0.8183z -1

0.1817
 for α=0  (deadbeat design)

        ( A *=1, τ
L=0)

HGL(z)=
(1-aL)z

-1

1-aLz
-1

 ( aL=e
-Δ t/τL)

AP : using H G̃L=HG̃  (model error τ
L=5)  : overcorrection

GAP : perfect prediction and τL = 1 : No modeling error

(better due to load prediction)

if GL  is FOPDT, only τ
L
 needs to be known

(∵ A *= f ( a)  even though GAP need load filtering)


